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Abstract

This paper looks at duopolistic competition in the Telecommunications
industry with non-linear tariffs and network based price discrimination. We
employ the standard Hotelling framework of horizontal product differentia-
tion but allow for differentiation in a second dimension. Modulo locations
consumers may have different demand elasticities with respect to the two net-
works which can capture, for example, differences in network histories. The
implications of these asymmetries on the possibility to sustain collusion are
investigated under alternative access pricing regimes.

1 Introduction

The literature on network interconnection and pricing strategies in the Telecommu-

nications industry originating in the work of Armstrong (1998) and Laffont, Rey, and

Tirole (LRT 1998a,b) has generically assumed that competition takes place between

symmetric networks.

This assumption of symmetry of the two networks in previous models is a most

welcome simplifying device to keep the analysis of the pricing vectors that form the

Nash equilibrium of the game tractable. However, in most cases of regulatory con-

cern it is a later entrant that competes against an incumbent with an established

market share and possibly also against substantial switching costs. Thus the as-

sumption, being at the source of various ”neutrality results”, see LRT (1998a) and

Dessein (2003) seems to be unfortunate.

Previous research in asymmetric telecommunication environments is still scarce.

Carter & Wright (2003) show that firms, given that access charges have to be chosen

∗LAMETA, University Montpellier 1.
†Universität Heidelberg.
‡LAMETA, University Montpellier 1.

1



reciprocally (i.e. symmetrically), may prefer them to be set at cost if size differences

are pronounced. Peitz (2005) investigates the issue of asymmetric regulation but

focuses on entry and consumer surplus. These two approaches are extended by

Stühmeier (2012) to asymmetric termination costs. Hoernig (2007) finds evidence

that larger firms will tend to have a larger price differential between its on- and

off-net prices but does not model access charges explicitly.

As shown in Behringer (2009) one can indeed find non-reciprocal equilibrium

access charges with a positive markup on termination cost as observed in regulatory

practice by simultaneously assuming that such charges are chosen non-cooperatively

and that networks are potentially asymmetric. This gap in the literature has been

noted as early as in Armstrong (2002, p.373)) and Geoffron & Wang (2008) employ

the same modelling of asymmetry to investigate the effects of calling clubs. Alterna-

tive explanations for positive markups are provided in Armstrong & Wright (2009)

and Jullien, Rey, & Sand-Zantman (2010). A collective volume dedicated to the

issue of asymmetries in mobile markets in order to increase realism as demanded in a

study for the European Commission (see Tera (2009), p.133) is Benzoni & Geoffron

(2007).

The issue of collusion has been present in the analysis of the Telecommunication

industry from the very beginning. For an introductory overview see Peitz et. al.

(2004). However all these investigations focus on the effect of access charges on the

resulting retail price components only. An exception to this is the more recent work

of Höffler (2009) who looks at collusion in the classical way of an infinitely repeated

Bertrand competition setting with heterogenous consumers. Again, however, firms

are assumed to be symmetric.

One of the few papers that have joined the issues of asymmetric firms and

incentives to collude is Baranes & Poudou (2009). It has long been consensus that

collusion is easier to sustain among symmetric firms. Their model allows for differing

price sensitivities of consumer demands (e.g. resulting from switching costs) and

access charges and they find that symmetry in access regulation may actually hinder

collusion. The model employs a differentiated duopoly framework which the present

paper extends to the standard horizontal differentiation Hotelling setup as commonly

used for the Telecommunications industry allowing for two-part tariffs and network

based price discrimination.

Today regulators intend to reduce the level of asymmetric regulation of access

charges according to a glide path. This is especially true in case of fixed and mobile

phone termination rates (see European Commission (2009)) and for the current

discussions on the implementation of ’bill-and-keep’ regimes. Thus the relevance of

extending the findings in Baranes & Poudou (2009) to the particularities of the
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Telecommunications industry follows naturally.

Section 2 presents the model in which the competitive, the collusive, and the

deviation outcome are laid out. Section 4 investigates how the critical discount

factors are affected by both demand asymmetries and access pricing regimes. Section

6 concludes. Proofs are relegated to an Appendix.

2 Model setup

The following model uses the setting of the network competition models of Laffont,

Rey, & Tirole (1998) with duopolistic competition in two-part tariffs, on-net and off-

net price discrimination, and balanced calling patterns. As Carter and Wright (1999,

2003), we allow explicitely for exogeneous asymmetry between networks. However,

we consider that the asymmetry is directly related to the demand for calls. That

is, asymmetry doesn’t lie on the fixed utility but directly affects the volume of calls

from consumers. We then consider the question of collusion sustainability in this

industry focusing on the role of the demand asymmetry.

Demand asymmetry. To model demand asymmetry between networks, we

consider consumer demand for calls is given by q(p, η), where p is the unit price and

η is some parameter assumed to encompass the asymmetry. This parameter can

represent the elasticity of demand or measure the size of the demand (or network),

or can be generalized to any other type of heterogeneity with relative importance

for each network respectively. In our duopoly setting we denote ηi as the parameter

for network i, with i = 1, 2. Considering network i, we assume that the asymmetry

parameter exceeds a given level, ηi ≥ η0. Networks are then symmetric when ηi = η0

(∀i = 1, 2) and asymmetric otherwise. The indirect utility v(p, η) a consumer gets

from consuming q unit of calls is given by:

v(p, η) ≡
∫ ∞
p

q(ζ, η)dζ = u(q(p, η), η)− pq(p, η)

where u(q, η) represents the gross utility from making q calls.

We consider standard assumptions both on demand and indirect utility1: q1(p, η) <

0 and v1(p, η) = −q(p, η) < 0, for all (p, η). That is, both quantity and indirect util-

ity are decreasing functions of unit price. Moreover, we maintain the following

assumption:

Assumption. For all (p, η), demand and indirect utility functions either satisfy:

A.1) sgn (q2(p, η)) = sgn (v2(p, η)) < 0, or, A.2) sgn (q2(p, η)) = sgn (v2(p, η)) ≥ 0

1Hereafter, lower indices denote the position of the argument of the function for which the
partial derivative is taken.
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Assumptions A.1) and A.2) deserve more comments. For a given price the

effects of asymmetries on demand and indirect utility are coinciding. Assumption

A.1) (resp. A.2)) imply that if the asymmetry has a decreasing impact on demand

it will also decrease the consumer indirect utility and vice versa. Assume η1 ≥ η2,

then Assumption A.1) implies that both demand and indirect utility derived from

network 1 are always lower than those derived from network 2. The reverse applies

for Assumption A.2).

To illustrate Assumption 2 consider the following examples:

Example 1 (isoelastic demand): Consider the isoelastic demand function given

by q (p, η) = A (η) p−ε(η), where A(η) > 0 is the size of demand (or network) and

ε(η) > 1 is the elasticity of demand. The indirect utility is then v (p, η) = A(η)p1−ε(η)

ε(η)−1 .

First consider that the asymmetry weighs fully on the demand size, i.e. A(η) = η

and ε(η) = ε. Then one can see that q2(p, η) = p−ε > 0 and v2(p, η) = p1−ε

ε−1 > 0.

Now, consider asymmetry weighs fully on the demand elasticity, i.e. A(η) = A and

ε(η) = η. Then q2(p, η) = − ln(p)q(p, η) < 0 and v2(p, η) = − (1+(η−1) ln(p))v(p,η)
(η−1) < 0,

for a given price p > 1.

Example 2 (linear demand): Consider the linear demand function given by

q (p, η) = A(η) − B (η) p, where A(η) > 0 is the size of demand (or network) and

B(η) > 0, a slope parameter that increases2 the elasticity of demand for a given

price. The indirect utility function is then v (p, η) = 1
2B(η)

q(p, η)2. Hence, if we

consider asymmetry weighs fully on the demand size, i.e. A(η) = η and B(η) = B,

then one can see that q2(p, η) = 1 > 0 and v2(p, η) = q(p, η)/B > 0. If asymmetry

weighs fully on the elasticity proxy parameter B, i.e. A(η) = A and B(η) = η, then

both demand and indirect utility are decreasing function of η, q2(p, η) = −p < 0

and v2(p, η) = − 1
2η2
q(p, η)(A+ ηp) < 0.

Network market shares and profits. We consider competition between two

networks, i = 1, 2, located at the opposite ends of a Hotelling unit line, with network

1 located at x = 0 and network 2 at x = 1. Consumers are assumed to be uniformly

distributed on the unit line and the transportation cost is denoted by θ > 0 per

unit. Both networks offer a two-part tariff to consumers including the fixed fee, fi,

the on-net unit price, pi, and the off-net unit price, p̂i. Hence, under a balanced

calling pattern, a consumer purchasing from network i obtains a net surplus given

by

wi = αiv(pi, ηi) + (1− αi)v(p̂i, ηi)− fi (1)

2Clearly B (η) is not the elasticity here, it writes ε = B (η) p/(q(p, η)2. However, increasing
B (η) increases the demand elasticity since dε/dB (η) = A (η) p/q(p, η)2 > 0.
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where αi denotes the market share of network i.

Given the unit transportation cost θ, a consumer who is identified by his location

x gets an overall utility w1 − θx, if he joins network 1, and w2 − θ(1 − x) if he

joins network 2. The marginal consumer between network 1 and 2 is defined by

x̂ ≡ (θ + w1 − w2)/2θ.

Each network is bearing a fixed cost normalized to 0, and the same marginal

costs c0 at the originating or terminating end of each call. For each unit of an off-

net call from network j to network i, network j pays the termination fee ai. Then,

the per unit cost of an off-net call is c0 + ai whereas the per unit cost of an on-net

call is 2c0.

We will restrict attention to market conditions for which the market is fully

covered by the networks. This will be the case in particular when networks are very

similar (η1 close to η2) and termination fees are cost-based (a1 and a2 close to c0).

To ensure this formally, we assume that networks are moderately differentiated so

that:

2

3
v(2c0, η0) ≥ θ ≥ 2

7
v(2c0, η0) (2)

Market shares of the two networks are then given by α1 = x̂ and α2 = 1− x̂.

Setting the two-part tariff (fi, pi, p̂i), the profit function for network i is equal

to:

πi (pi, p̂i; p−i, p̂j) = αi {αiq(pi, ηi)(pi − 2c0) + (1− αi)q(p̂i, ηi)(p̂i − c0 − aj)
+(1− αi)q(p̂j, ηj)(ai − c0) + fi}

where q(pi, ηi) and q(p̂i, ηi) are respectively the number of on-net calls and off-net

calls of network i.

¿From (??), we have fi = αiv(pi, ηi) + (1−αi)v(p̂i, ηi)−wi, we can then rewrite

profit of network i as:

πi (p,w) = αi{x̂q(pi, ηi)(pi − 2c0) + (1− αi)q(p̂i, ηi)(p̂i − c0 − aj) + (3)

+(1− αi)q(p̂j, ηj)(ai − c0) + αiv(pi, ηi) + (1− αi)v(p̂i, ηi)− wi}

In what follows we define two shortcut notations for indirect utility differences func-

tions V (y, z, i, j) ≡ v(y, ηi)− v(z, ηj) and revenues R (y, z, t, i) ≡ (y − z)q(t, ηi).

Collusion. As is standard in the analysis of tacit collusion (Friedman (1971)),

we consider an infinitely repeated tariff competition game. The punishment strategy

for a given operator corresponds to a trigger strategy consisting of a reversion to
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static competitive equilibrium. We denote the individual profit gained from a pun-

ishment strategy (Nash reversion to competition) as π∗i , and the individual collusion

profit as πCi . Finally the individual profit gained from deviating from the collusive

agreement is πDi . As is well know, the fully collusive outcome can then be sustained

as a subgame-perfect equilibrium of the infinitely repeated game if the intertemporal

discount factor, δ, is sufficiently large:

δi ≥ δ̂ = max{δ̂1, δ̂2} (4)

where δ̂ denotes the critical discount factor and δ̂i =
πDi −πCi
πDi −π∗

i
represents the critical

discount factor for network i.

In the remainder of the paper, we will study levels and variations of this critical

discount factor δ̂ with respect to both reciprocity in the access charge regulation

and potential asymmetry of networks. This will help us to asses how incentives to

collude are driven by those features in this industry. Indeed, when for any reason,

the critical discount factor decreases, firms are able to collude for a larger range of

individual discount factors and conversely. As a result, any factor that pushes down

that critical discount factor shall be considered has a factor that facilitates collusion

in the industry. If it pushes up, the factor hinders collusion. Our aim is to indentify

how asymmetric access charge regulation is such a facilitating or hindering factor

when networks become asymmetric. To perform this analysis, we will now look

at the equilibrium outcomes for each operator corresponding to the three different

market configurations (competition, collusion and deviation).

3 Equilibrium outcomes

In this section, we determine the equilibrium outcomes for each market configuration

(competition, collusion and deviation). Let’s start with the competitive outcomes.

The competitive outcomes. This situation is the one studied by Laffont, Rey

& Tirole (1998b). The equilibrium fixed fee and price vector components of network

i satisfy: (p∗i , p̂
∗
i , fi) = arg maxpi,p̂i,fi πi (pi, p̂i; pj, p̂j). The result is then stated in the

following Lemma.

Lemma 1 (LRT 1998a.). The equilibrium unit prices and the fixed fee of network i

in the competitive setting are:

(i) p∗i = 2c0 and p̂∗i = c0 + aj

(ii) fi =
π∗i
α∗i
− (1− α∗i )R

(
ai, c0, p̂

∗
j ,−i

)
6



Lemma 1 states the standard results for the competitive equilibrium prices. Equi-

librium unit prices are equal to their respective marginal costs. Hence, on-net prices

are set at the total marginal cost of an on-net call (2c0) and off-net prices are set

to their marginal cost including the unit termination fee of the competing network

(c0 + aj), the total ”perceived marginal cost”. Equilibrium fixed fees are then used

by networks to extract surplus from consumers.

It follows that equilibrium market shares as determined by the marginal con-

sumer are

α∗1 =
θ + V (p̂∗1, p

∗, 1, 2)− f1 + f2
2θ + V (p̂∗1, p

∗, 1, 1) + V (p̂∗2, p
∗, 2, 2)

and α∗2 = 1− α∗1

Using (3), we obtain the competitive equilibrium profit of network i:

π∗i (ai, aj, ηi, ηj) =

(
2θ + Σk=2

k=1V (p̂∗i , p
∗, k, k) +R

(
ai, c0, p̂

∗
j ,−i

))(
6θ + 2Σk=2

k=1R (a−k, c0, p̂∗k, k) + 3Σk=2
k=1V (p̂∗k, p

∗, k, k)
)2×

×
(
3θ + 2V (p̂∗i , p

∗, i,−i) + V
(
p̂∗−i, p

∗,−i, i
)

+ Σk=2
k=1R (a−k, c0, p̂

∗
k, k)

)2
We highlight the fact that these equilibrium profits are functions of termination

charges (a1, a2) and elasticity parameters (η1, η2). Note that when termination

charges are cost based and symmetry holds, profit of network i is simply equal

to π∗i (c0, c0, η0, η0) =
θ

2
.

The collusive outcomes. In order to determine the fully collusive outcome,

we assume that the price vector maximizes joint profit subject to a participation

constraint for all consumers. Then, collusive unit prices and the fixed fee result from

maxp,f π1 (p,w) +π2 (p,w) s.t. Uk(x) ≥ 0. We, therefore, have the following result:

Lemma 2. The equilibrium unit prices and the fixed fee of network i in the collusive

setting are:

(i) pCi = p̂Ci = 2c0, for i = 1, 2

(ii) fCi = 1
4

(3v(2c0, ηi) + v(2c0, ηj))− 1
2
θ

Notice that this collusive equilibrium corresponds to the multiproduct monopo-

listic outcome when charging a two-part tariff. All collusive marginal prices are set

to marginal cost in order to enhance network productive efficiency and the fixed fees

are used to capture almost the entire consumer’s surplus (and the entire one of the

indifferent consumer).

Using (3) and substituting equilibrium collusive prices, we obtain the equilibrium
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profit of network i in the collusive setting:

πCi (ai, a−i, ηi, η−i) =

(
2θ + V

(
pC , pC , i,−i

)) (
2θ + V

(
pC , pC ,−i, i

))
16θ2

×

×

(
R
(
ai, c0, p

C ,−i
)
−R

(
a−i, c0, p

C , i
)

+
θ
(
3v
(
pC , ηi

)
+ v

(
pC , η−i

)
− 2θ

)
(2θ + V (pC , pC ,−i, i))

)

Note that when termination fees are cost based and symmetry holds, profits are

simply πCi (c0, c0, η0, η0) = (2v (2c0, η0)− θ) /4, which is positive if (2) holds.

The deviation outcomes. We assume w.l.o.g. that it is network i that deviates

from the collusive outcome. Then, the deviation unit prices and the fixed fee is

derived from maxpi,p̂i,fi πi
(
pi, p̂i, p

C
−i, p̂

C
−i, fi, f

C
−i
)

s.t. Uk(x) ≥ 0. We then find the

result:

Lemma 3. The equilibrium unit prices and the fixed fee in the deviation setting are:

(i) p∗i = 2c0 and p̂∗i = c0 + aj

(ii) fDi =
πDi
αDi
− (1− αDi )R (ai, c0, p

∗,−i)

Note that network i deviates from the collusive equilibrium using its fixed fee

only while leaving unit on-net and off-net prices unchanged. Doing so, network i

can attract more consumers and increase its overall profit.

Using (3), we deduce the equilibrium deviation profit of network i:

πDi (ai, a−i, ηi, η−i) =
1

64

(
4 v (p̂∗i , ηi) + 4R

(
ai, c0, p̂

∗
−i,−i

)
+ V (p∗, p∗, i,−i) + 2 θ

)2
R
(
ai, c0, p̂∗−i,−i

)
+ V (p̂∗i , p

∗, i, i) + 2 θ

Again, if reciprocal termination fees apply deviation profits are equal for the two

operators. For both of them, cost-based termination fees and symmetry give profit:

πDi (c0, c0, η0, η0) = (2v (2c0, η0) + θ)2 /32θ.

A thorny issue when looking at deviation outcomes is that monopolization can

occur ex-post with the deviating firm remaining the only firm in the market. To

avoid this we restrict our model to market conditions that preserve a duopolistic

structure when firms deviate. With condition (2), network i’s market share, αDi ,

always belongs to the interval [0, 1] when (ai, a−i, ηi, η−i) = (c0, c0, η0, η0), for all i.

We are now in a position to construct and study the critical discount factor as

defined in (4). However, due to the tedious expressions for profits we will not provide

a complete exposure and characterization of this threshold. Note that the individual
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thresholds δ̂i (ai, a−i, ηi, η−i) defined in (4) are implicit functions of (a1, a2, η1, η2) as

are profits.

Equipped with this framework we now proceed to the analysis of the sustain-

ability of price collusion. We focus on the the effect of the asymmetry parameter

influencing demand elasticity or network size, on the incentives for the operators

to collude. In particular we examine how asymmetric termination fee regulation

may affect the sustainability of collusion. However a complete analysis for all val-

ues of access charges (a1, a2) and asymmetry parameters (η1, η2) involves strong

non-linearities that make the analysis very tedious. Hence, as it is standard in the

literature, we will analyze asymmetric regulation locally around cost-based termi-

nation fees. That is, we will study in the following how a departure from cost-based

regulation may affect the sustainability of collusion depending on the potential asym-

metry of networks and regulation allowing for reciprocal or asymmetric termination

fees. To better isolate the pure effect of network asymmetry we first consider that

networks are symmetric, so that η1 = η2 = η0, and study the impact of differ-

ent regulatory termination fee regimes (reciprocal v.s. asymmetric regulation) on

collusion.

4 Symmetric networks

This section analyzes the effects of asymmetric regulation3, a1 ≥ a2 = c0, in the

case where networks are symmetric, η1 = η2 = η0. We first examine the reciprocal

regulation regime and then asymmetric regulation.

4.1 Reciprocal regulation

Considering reciprocal regulation, a1 = a2 = a, with symmetric networks and a cost-

based termination fee, a = c0, it can be shown from (4) that the critical discount

factor becomes:

δ̂ (c0, c0, η0, η0) =
2v(2c0, η0)− 3θ

2v(2c0, η0) + 5θ

Note that this corresponds to the long run situation in which the initial advantages

of the incumbent (that may result from brand recognition or switching costs) are

overcome and the networks’ termination fees are regulated to follow for example the

”glide path” to cost required by by the European Commission.

3Since networks are assumed to be symmetric, we could either consider the case a1 ≥ a2 = c0
or a2 ≥ a1 = c0.
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The critical discount factor δ̂ is then decreasing with the transportation cost

θ, which plays the role of a network differentiation parameter. If θ is larger, goods

become less substitutable for consumers, i.e. product differentiation is higher, which

implies that it is easier to sustain collusion. Why is this the case? Omitting argu-

ments, the competitive profit is

π∗i =
θ

2
and, as usual in the Hotelling model, strongly increasing in θ. Note also that for

θ > 2
3
v(2c0, η), there is no incentive to deviate as

πDi =
(2v(2c0, η0) + θ)2

32θ
< π∗i =

θ

2
.

Hence, we need (2) to hold4. The collusive profit is

πCi =
2v (2c0, η0)− θ

4

Note that the collusive profit is decreasing in θ, i.e. a higher degree of product dif-

ferentiation reduces the total profit of an already colluding cartel, whereas the effect

on the deviation profit is ambiguous. However, the differences in the numerator,

πDi − πCi , and the denominator πDi − π∗i are decreasing in θ and, from the overall

result, we know that the effect of the numerator dominates, making deviation from

the collusive agreement less attractive.

Considering now reciprocal regulation, a1 = a2 = a. We have the following

result:

Proposition 1. In a symmetric network setting and with cost-based regulation, the

critical discount factor δ̂ is decreasing in the reciprocal access charge.

We find that increasing a reciprocal termination fee locally around cost facilitates

collusion. Conversely reducing reciprocal termination fee to cost as under the Euro-

pean glide path will make collusion harder to sustain. This first result underlines the

collusive effect of reciprocal regulation in an infinitely repeated tariff competition

game and confirms results of the standard literature on competition between inter-

connected networks stated by LRT (1998a) and Armstrong (1998). Indeed, when

the access charge increases from its cost-base, off-net prices reach a higher level for

both operators due to reciprocal access charges. Then operators compete through

fixed fees which reduces their competitive profits. As a consequence they have a

higher incentive to collude. This proposition shows that following the so-called Eu-

ropean glide path gives a double-benifit for the society when network are (or have

become) symmetric.

4For θ = 2
3v(2c0, η0) we have πD

i = 1
3v(2c0, η0) and πC

i = 1
3v(2c0, η0) but also π∗i = 1

3v(2c0, η0)

then δ∗i = 0 and one can sustain collusion for any discount factor.
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4.2 Asymmetric regulation

We now consider asymmetric regulation, i.e. non-reciprocal termination fees, a1 ≥ c0

and a2 = c0. Operators then do not have the same incentives to collude and their

critical discount factors take different values, δ̂1 6= δ̂2, even though networks are fully

symmetric. Of course such termination fees will have an impact on the incentive

to collude for both networks and thus on the critical discount factor δ̂. Consider

a2 = c0, the following proposition states the result for a slight deviation of network

1’s termination fee from its cost-based level. Let’s fist define θ̃ ≡ 6
13
v(2c0, η0). Then

Proposition 2. With symmetric networks, assuming cost-based termination fees

are regulated asymmetically, there exists a threshold θ̃ such that ∂δ̂(c0,c0,η0,η0)
∂a1

≤ 0 if

θ ≥ θ̃ and ∂δ̂(c0,c0,η0,η0)
∂a1

> 0 otherwise.

We find that when networks are symmetric, asymmetric regulation will facilitate

collusion whenever the product differentiation is sufficiently high. Conversely, in that

case, reducing asymmetric regulation toward a glide path regime will make collusion

harder to sustain. However, this is no longer the case when product differentiation is

low. It appears that if θ is low there may be a different impact of on-net and off-net

access margins with respect to price collusion: mainly they facilitate collusion but

they can hinder it if θ is high.

5 Asymmetric networks

We consider now that networks are asymmetric so that the asymmetry parameter

is not the same for both networks. Let’s suppose that network 1 has the higher

value for the asymmetry parameter and network 2 still has the lower value η0, so

that η1 > η2 = η0. Hence, different cases may arise whether network 1 benefits

from asymmetric regulation or not. As in the previous section, we assume that

asymmetric regulation benefits network 1, so a1 > a2 = c0. Following Assumption

2, illustrated by Examples 1 and 2, the asymmetry between networks can repre-

sent two kind of situations. First, network asymmetry can fall fully on the demand

elasticity (Assumption A.1). In this case, asymmetric regulation benefits the net-

work with the higher elastricity. It has often been considered that new entrants in

the mobile market face a higher elasticity than the incumbent because of switching

costs or first mover advantage. Then, asymmetric regulation can be considered as a

way to reduce the competitive disadvantage of the high elasticity network (i.e. new

entrant) by offering the possibility to charge a higher termination fee than the incum-

bent. This has been allowed for in the European regulation of mobile termination
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rates. Network asymmetry can also fall on the demand or network size (Assumption

A.2). This second case then represents the situation in which asymmetric regulation

benefits the operator with the larger demand or network. Such kind of asymmetric

regulation never happened in the termination fee regulation policy. This is probably

because asymmetric regulation has always been implemented to limit the advantage

of the incumbent and favour competition of new entrants. However, asymmetric

regulation will have an effect on the sustainability of collusion when favoring the

incumbent. That is, asymmetric regulation can reduce operators’ incentives to stick

to a collusive agreement. In the following, we investigate how the critical discount

factor is affected by both networks asymmetry and different regulatory regimes.

5.1 Reciprocal regulation

Consider first that reciprocal regulation applies. Termination fees are then cost-

based and a1 = a2 = c0, the critical discount factors for network i is given by:

δ̂i (c0, c0, ηi, η−i) =
9 (v(2c0, ηi) + 3v(2c0, η−i)− 6θ)2

(23v(2c0, ηi)− 11v(2c0, η−i) + 30θ) (7v(2c0, ηi) + 5v(2c0, η−i)− 18θ)
(5)

The following result compares the incentive for collusion of both networks and

states the critical discount factor δ̂:

Lemma 4. Assuming a small asymmetry between networks (η1 is in a right neigh-

bourhood of η2 = η0):

(i) if A.1 holds, then δ̂1 > δ̂2

(ii) if A.2 holds, then δ̂1 < δ̂2

When networks are asymmetric and the reciprocal termination fee is cost-based,

the critical discount factor is the one corresponding to the operator that, because

of a (perceived) differentiation in networks or the installed user base, is structurally

able to lower the consumers’ surplus at each price. The finding implies that a more

advantaged firm is more likely to break a collusive agreement. This is in line with

the common precept that collusion is easier to sustain among equals.

Let’s now assume reciprocal termination fees, a1 = a2 = a ≥ c0 and assume a

small termination fee mark-up. The following result shows what can be the interplay

between network asymmetries and reciprocal termination fees.

Proposition 3. (i) Firstly, when A.1. holds, there exists a level v of v2(p, η) and

two values θ1 = x1v(2c0, η0) and θ2 = x2v(2c0, η0) where x2 > x1 > 6/13 such that:
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(i.a) if v < v2(p, η) < 0 and θ ∈ [θ1, θ2] then

∂2δ̂1 (c0, c0, η0, η0)

∂a∂η1
< 0

(i.b) if v < v2(p, η) < 0 and θ /∈ [θ1, θ2] or if v2(p, η) ≤ v for all θ then

∂2δ̂1 (c0, c0, η0, η0)

∂a∂η1
> 0.

(ii) Secondly when A.2. holds, then unambiguously

∂2δ̂2 (c0, c0, η0, η0)

∂a∂η1
< 0

As shown in Proposition 1 when networks are homogeneous, reciprocal access

charges over cost yield a facilitating effect on collusion in the industry. Proposi-

tion 3 shows that this facilitating effect is not always enhanced further by network

asymmetries. This depend on both the level of product differentiation θ and the

impact of network asymmetries on the surplus v(p, η). It is worth pointing out

that, depending on those fundamentals, the critical discount factor can be reduced

when the reciprocal access charge is slightly raised above cost: More asymmetries

are not hindering collusion systematically, this will be the case when asymmetries

deteriorate surpluses strongly (v2(p, η) ≤ v < 0).

5.2 Asymmetric regulation

Assuming non-reciprocal charges a1 ≥ c0 and a2 = c0 from Proposition 2 we know

the effects of access margins on collusion (around cost-based pricing) and from

Proposition ?? we have results on the effects of network asymmetries. Using these

results we now investigate how this result is affected by slight demand asymmetries.

Proposition 4. Firstly, A.1 holds then there exists a level of θ i.e. θ̂ < 2
7
v(2c0, η0)

such that
∂2δ̂1 (c0, c0, η0, η0)

∂a1∂η1
≶ 0 if θ ≷ θ̂

Secondly, when A.2 holds, then unambiguously

∂2δ̂2 (c0, c0, η0, η0)

∂a1∂η1
< 0

If A.1. holds (i.e. v2(p, η) < 0) then a slight network asymmetry in the sense

that η1 > η0 strengthens the facilitating effect of a positive off-net access margin

on collusion if θ ≥ θ̂ but weakens this facilitating effect otherwise. If A.2. holds

13



(i.e. v2(p, η) > 0) then a similar slight network asymmetry always strengthens

the facilitating effect of positive off-net access margins on collusion but weakens the

hindering effect of positive off-net margins otherwise. Hence in both cases if product

differentiation is high enough more asymmetries are not hindering collusion.

6 Conclusion

For a differentiated Bertrand duopoly setting, Baranes & Poudou (2009) show that

cost symmetry may hinder collusion so that the common precept that it is easier to

collude amongst equals does not always hold. In this case we look at a differentiated

Hotelling duopoly model of the kind used by LRT (1998a,b) for the telecommuni-

cations industry with a potential asymmetry from differences in demand elasticities

that may result from differences in firm histories.

We find that with homogenous networks, i.e. what will be the long-run competi-

tive outcome in this industry following the technological breakthroughs that enabled

liberalization and competition since the beginning of this century, under a cost based

access charge regime, a larger reciprocal on-net off-net margin will actually improve

the possibilities for collusion. We also found that reducing reciprocal access charges

to true cost as aimed at by the European ”glide path” envisaged by the Commission

(and Ofcom in the UK, see Ofcom (2010)) will make collusion harder to sustain for

homogenous networks.

In a competitive setting with heterogenous networks, i.e. what can be seen as the

medium term outcome where competition is fostering and regulation can therefore

be slowly fading out, a higher degree of differentiation in demand elasticities actually

improves firms’ profits and it is the firm facing the larger demand elasticity (usually

the incumbent) that is more likely to have a level of impatience that leads to the

breach of a collusive agreement. This has implications for policy for the medium

term as measures aimed at equalizing (consumer’s perception of the) networks may

actually improve their possibilities to collude. The finding is thus in line with the

common precept that it is easier to sustain collusion amongst equals and should

keep regulators on their toes.
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Appendix

• Proof of Lemma 1. Given in LRT (1998a)..

•Proof of Lemma 2. Using expression (3), one can form the joint profit π1 (p,w)+

π2 (p,w) and shows ii is independent of (a1, a2), so the relevant first order conditions

∂(π1 (p,w) + π2 (p,w))

∂pi
= 0,

∂(π1 (p,w) + π2 (p,w))

∂p̂i
= 0

∀i ∈ {1, 2} imply pC1 = p̂C1 = 2c0. Then from since x̂ = (θ + w1 − w2)/2θ, we have

that

x̂ = α =
1

2
+
w1 − w2

2θ
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and with (1) using pC we can calculate

α̂C =
1

2
+

1

2θ
(v(2c0, η1)− f1 − v(2c0, η2) + f2)

Setting the utility of the marginal consumer to zero

Û = α̂Cv(2c0, η1) + (1− α̂C)v(2c0, η2)− f1 = 0

one can determine the collusive fixed charge as

fC1 = v(2c0, η1) + v(2c0, η2)− f2 − θ

Putting this into Π = π1 (2c0,w) + π2 (2c0,w) and maximizing it w.r.t. f2, s.t.

U2(α
C
1 ) ≥ 0 yields the result

fC =

(
fC1
fC2

)
=

1

4

(
3v(2c0, η1) + v(2c0, η2)− 2θ
3v(2c0, η2) + v(2c0, η1)− 2θ

)
.

• Proof of Lemma 3. W.l.o.g. assume that i = 1. A similar proof holds if i = 2.

From (3), the relevant first order conditions

∂(π1
(
p1, p̂1, p

C
2 , p̂

C
2 , f1, f

C
2

)
)

∂p1
= 0 and

∂(π1
(
p1, p̂1, p

C
2 , p̂

C
2 , f1, f

C
2

)
)

∂p̂1
= 0

imply (
pD1 , p̂

D
1

)
= (p∗1, p̂

∗
1) = (2c0, c0 + a2)

i.e. optimal deviation yields ”perceived marginal cost” pricing just as in monopoly.

The deviant profit given
(
pD1 , p̂

D
1

)
is

πD1 = α̂D
(
(1− α̂D)q̂2(a1 − c0) + fD1

)
and thus

fD1 =
πD1
αD1
− (1− αD1 )q(p̂C2 , η2)(a1 − c0).

with p̂C2 = 2c0 = p∗. Moreover as x̂ = α, with (1) and using
(
pD1 , p̂

D
1

)
, we can

calculate

α̂D =
θ − f1 + f2 − v(2c0, η2) + v(c0 + a2, η1)

2θ − v(2c0, η1) + v(c0 + a2, η1)

Setting the utility of the marginal consumer to zero

Û = α̂Dv(2c0, η1) + (1− α̂D)v(c0 + a2, η2)− f1 − θα̂D = 0

which can be solved for

f2 =
θf1 + (θ − v(2c0, η1)− v(2c0, η2)θ − v(c0 + a2, η1)v(2c0, η2) + v(2c0, η1)v(2c0, η2)

v(2c0, η1)− v(c0 + a2, η1)− θ
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Plugging into the deviant profit

πD1 = α̂D1
(
(1− α̂D1 )q̂2(a1 − c0) + fD1

)
and maximizing over f1 one finds optimal deviation profit as

πD1 =
1

64

(4 v (p̂∗1, η1) + v(p∗, η1)− v(p∗, η2) + 4 (a1 − c0)q (p̂∗2, η2) + 2 θ)2

v (p̂∗1, η1)− v(p∗, η1) + (a1 − c0)q (p̂∗2, η2) + 2 θ

Notice that when firms are homogeneous and access prices cost-based

α̂D1 =
2v(2c0, η0) + θ

8
= 1− α̂D2

We can check that α̂Di ∈ [0, 1] if (2) holds.

• Proposition 1: Using δ̂i = (πDi − πCi )/(πDi − π∗i ) with the profit terms for

homogenous firms and reciprocal non-cost based access charge we take the derivative

with respect to a and replace access charge with the true cost term c0 to find:

∂δ̂ (c0, c0, η0, η0)

∂a
= −8θ

q(2c0, η0)

(2v(2c0, η0) + 5θ)2
< 0.

• Proof of Proposition 2. Denote the difference between both individual critical

discount factors as ∆ (a1, a2, η1, η2) ≡ δ̂1 (a1, a2, η1, η2) − δ̂2 (a2, a1, η2, η1). Around

cost based access pricing for a2, the variation of difference between critical discount

factor δ̂1 − δ̂2 w.r.t. a1 evaluated for a1 = c0 is written:

lim
a1→c0

∂∆ (a1, c0, η0, η0)

∂a1
= −16

3

q(2c0, η0)(3v(2c0, η0)− 5θ)

(2v(2c0, η0) + 5θ)2
.

It is positive if θ ≥ 3
5
v(2c0, η0) but negative if θ < 3

5
v(2c0, η0). Hence if θ ≥

3
5
v(2c0, η0), δ

∗
1 is the relevant critical discount factor as δ̂1 = max{δ̂1, δ̂2} and taking

the derivative with respect to a1 for a1 = c0 leads to

∂δ̂1 (c0, c0, η0, η0)

∂a1
= −4

3

q(2c0, η0)(6v(2c0, η0)− 7θ)

(2v(2c0, η0) + 5θ)2
< 0 for all θ

For θ < 3
5
v(2c0, η0), the relevant critical discount factor is then δ∗2 and the derivative

with respect to a1 for a1 = c0 writes

∂δ̂2 (c0, c0, η0, η0)

∂a1
=

4

3

q(2c0, η0)(6v(2c0, η0)− 13θ)

(2v(2c0, η0) + 5θ)2
≶ 0 if θ ≷ θ̃.

where θ̃ = 6
13
v(2c0, η0).
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• Proof of Lemma 4. Let us consider that (a1, a2, η1, η2) = (c0, c0, η1, η0) and from

(5) in the text one can form

δ̂1 (c0, c0, η1, η0) = 9
(3ν0 + ν1 − 6 θ)

2

(7ν1 + 5ν0 − 18 θ) (23ν1 − 11ν0 + 30θ)

δ̂2 (c0, c0, η0, η1) = 9
(3ν1 + ν0 − 6 θ)

2

(7ν1 + 5ν0 − 18 θ) (23ν1 − 11ν0 + 30θ)

where ν0 = v(2c0, η0) and ν1 = v(2c0, η1). Thus we can derive ∆ (c0, c0, η1, η0) and

considering now a slight increase in η1 above η0 then we have

∂∆ (c0, c0, η0, η0)

∂η1
= −16

3
v2(2c0, η0)

3ν0 − θ
(2ν0 + 5θ)2

(A.1)

as θ has been assumed to take values below 2
3
ν0, the sign of this derivative is exactly

the opposite of the sign of v2(p, η). Hence it depends on assumptions A.1 and A.2.

• Proof of Proposition 3. If A.1 holds i.e. v2(p, η) < 0 and q2(p, η) < 0, the

following second order cross partial derivative tells us how this reciprocal access

pricing effect is modified by an increasing network asymmetry, that is

∂2δ̂1 (c0, c0, η0, η0)

∂a∂η1
=

4

3

(6ν0 − 13θ)

(2ν0 + 5θ)2
q2 −

8

9

(8(ν0)2 − 154θν0 + 117θ2) q0

(2ν0 − 3θ) (2ν0 + 5θ)3
v2

with ν0 = v(2c0, η0), q
0 = q(2c0, η0), v2 = v2(2c0, η0) and q2 = q2(2c0, η0). Letting

θ = xv0 for x ≤ 2
3
, first one can easily see that (8− 154x+ 117x2) (v0)

2
< 0 if

(2) holds i.e. if x ∈ [2
7
, 2
3
]. Hence if x ∈ [2

7
, 6
13

], then unambiguously (omitting

arguments) ∂2δ∗1/∂a∂η1 < 0. However, if x > 6
13

, we can define values y (x) of v2 such

that ∂2δ∗1/∂a∂η1 reaches zero for each x ∈] 6
13
, 2
3
]. This leads to solve ∂2δ∗1/∂a∂η1 = 0

with respect to v2, that is

y (x) =
3

2

(6− 13x) (2− 3x) (2 + 5x)

8− 154x+ 117x2
ν0

q0
q2 < 0 for all x ∈]

6

13
,
2

3
]

Moreover studying y (x) shows that, in the interval ] 6
13
, 2
3
], it reaches its minimum

for x = x where y′ (x) = 0 such as

x ∈ arg

{
x ∈]

6

13
,
2

3
]

∣∣∣∣ 3472− 7888x+ 29824x2 − 60060x3 + 22 815x4 = 0

}
so that x ' 0.5568 and y (x) ' 0.107ν

0

q0
q2 < 0. Therefore we can conclude that if

v2 < y (x) hence ∂2δ∗1/∂a∂η1 < 0 for all admissible x. But if y (x) < v2 < 0, as

∂2δ∗1/∂a∂η1 increases with v2, ∂
2δ∗1/∂a∂η1 > 0 at x = x. As y (x) is strictly convex

in x, for each v2, it exists two values of x1 and x2, such that x2 < x < x1 <
6
13

,

defined by y (x1) = y (x2) = v2 and for which ∂2δ∗1/∂a∂η1 > 0 when x ∈ [x1, x2].
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Second assume that A.2 holds i.e. v2(p, η) ≥ 0 and q2(p, η) ≥ 0, in same way as

above, one can find that

∂2δ∗2 (c0, c0, η0, η0)

∂a∂η1
= −4

3

(6ν0 − 7θ)

(2ν0 + 5θ)2
q2 +

8

9

(8(ν0)2 − 82θν0 + 9θ2) q0

(2ν0 − 3θ) (2ν0 + 5θ)3
v2

Letting θ = xv0 for x ≤ 2
3
, one can easily see that (8x2 − 82x+ 9) θ2 < 0 and

(6x− 7) θ > 0 if (2) holds. A a result, ∂2δ∗2/∂a∂η1 < 0 for all x ≤ 2
3
.

• Proof of Proposition 4. From Lemma 4 we know that around cost-based access

pricing for a slight asymmetry of network 1 such that η1 > η2 = η0 the critical factor

is δ∗1 if v2(p, η) < 0 and δ∗2 if v2(p, η) > 0. If A.1 holds i.e. v2(p, η) < 0, the following

second order cross partial derivative tells us how this access pricing effect is modified

by an increasing network asymmetry, that is

∂2δ∗1 (c0, c0, η0, η0)

∂η1∂a1
= −4

9

(
36 (v0)

3 − 188θ (v0)
2

+ 637θ2ν0 − 718 θ3
)
q0

θ (2ν0 − 3θ) (2ν0 + 5θ)3
v2

where ν0 = v(2c0, η0), q
0 = q(2c0, η0), v2 = v2(2c0, η0). Let θ = xv0 for x ≤ 2

3
, thus

we have (36− 188x+ 637x2 − 718x3) (v0)
3 ≥ 0 and so

∂2δ∗1(c0,c0,η0,η0)

∂η1∂a1
> 0 if x ≥ 0.586

and negative otherwise. Hence in the first case of Proposition 2 we have shown that

around symmetry for networks if θ > 3
5
v0 > 0.586v0 then

∂2δ∗1(c0,c0,η0,η0)

∂η1∂a1
< 0 and by

∂δ∗1(c0,c0,η0,η0)

∂a1
< 0. If A.2 holds i.e. v2(p, η) ≥ 0 the corresponding derivative on the

critical discount factor δ∗2 writes

∂2δ∗2 (c0, c0, η0, η0)

∂η1∂a1
= −4

9

(
36 (v0)

3 − 132θ (v0)
2

+ 345θ2ν0 − 214θ3
)
q0

θ (2ν0 − 3θ) (2ν0 + 5θ)3
v2

Using again the variable change θ = xv0 for x ≤ 2
3
, we have (36− 132x+ 345x2 − 2143) (v0)

3 ≥
0 for all x, and so

∂2δ∗2(c0,c0,η0,η0)

∂η1∂a1
< 0. So from Proposition 2 we know that

∂δ∗2(c0,c0,η0,η0)

∂a1
≶

0 as θ ≷ 6
13
ν0. Then for θ ”large” we have

∂δ∗2(c0,c0,η0,η0)

∂a1
< 0 and the critical discount

factor is equally reduced further by (slight) network asymmetries.
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