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1 Introduction

The net neutrality debate has focused on the question whether users’ ISPs are allowed
to charge content providers for the delivery of traffic, possibly dependent on the type of
content and the priority which is assigned to the data packets. The debate within eco-
nomics has focused on allocative consequences of various net neutrality rules. Apart from
vertical foreclosure concerns, possible inefficiencies in the regulated or unregulated market
may be due to indirect network externalities as well as direct network externalities arising
from congestion in the network. The present paper adds to this debate by considering the
incentives of content providers to inflate traffic in case traffic is underpriced. We show
that strict net neutrality rules lead to traffic inflation and tend to lead to a loss in social
welfare.

Our analysis is motivated by three observations. First, there are congestion issues on
the internet. The increase in high-bandwidth applications and content, combined with
limited last-mile capacity, results in congestion during peak hours, leading to delay. Sec-
ond, some content is more sensitive to delay than other content. More time-sensitive
content includes voice and video telephony, online games, real-time video streaming, and
certain cloud services; less time-sensitive content includes email, web browsing, and file
sharing, where modest delays in transmission do not matter much. Third, and most impor-
tantly, certain techniques used to minimize delay – so called congestion control techniques –
work by creating additional traffic. These include forward-error-correction (FEC) schemes,
used to protect video packets,1 and multiple multicast trees to provide redundant paths.
Roughly speaking, these techniques introduce redundancies which increase packet size but
partially insure the sender against packet losses.

From an economic point of view, congestion control techniques of this type create
externalities in traffic generation: although they reduce individual delay, they increase
aggregate congestion on the network. Under net neutrality (best effort for all traffic,
no prioritization, zero prices on the content side), the network essentially constitutes a
common property resource. Net neutrality therefore leads to excessive exploitation by
time-sensitive CPs. By charging for time-sensitive traffic and handling it with priority, the
ISP can serve as the guardian of the common property resource. This possibly reduces
redundancies and other sources of inflation and gives time-insensitive traffic lower priority,
which increases the capacity effectively available for time-sensitive traffic.

In our formal framework, there may be one or two lanes of traffic. The speed with
which traffic flows is endogenous and can be controlled by the ISP subject to the constraints
imposed by the regulator. There are two types of content: time-sensitive content and time-
insensitive content. Time-sensitive content must be delivered without delay for consumers
to derive utility from it; for time-insensitive content, delay does not matter. The capacity
(bandwidth) of the ISP’s network is fixed and constitutes a bottleneck needed to reach
consumers. We assume that the probability that a given packet arrives without delay
depends on the ratio of bandwidth to total traffic. To obtain a simple, tractable setting,
we postulate that content providers can enhance the likelihood of on-time delivery by

1Skype has been reported to react to persistent packet losses by increasing packet size (De Cicco et al.,
2011).
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sending packets more than once. This increases the probability that at least one packet
arrives on time, but also increases total traffic, and hence network congestion.

The first-best allocation in this framework always involves prioritization of time-sensitive
content, with the volume of traffic adjusted so as to avoid congestion. In a second-best
world, where all content must be carried in a single transport class, some congestion is
generally optimal, as it increases delivery probabilities for time-sensitive content at the
expense of time-insensitive content. We show that net neutrality regulation leads to an
equilibrium level of traffic that generally exceeds the second-best level, as content providers
fail to internalize the effect of their own traffic on the overall network congestion.

We consider several departures from net neutrality – namely, deep packet inspection,
transmission fees, and bandwidth tiering – and show that they can increase efficiency. Deep
packet inspection allows the ISP to distinguish different types of content and prioritize
time-sensitive content. Although this can lead to efficient outcomes in some cases, there
are other cases in which time-sensitive CPs dissipate the reductions in delay by increasing
traffic, and overall delivery probabilities may even be lower than under neutrality.

When the ISP can charge a uniform transmission fee but cannot prioritize traffic, it
sets the fee so as to price out congestion. The second-best traffic volume generally does
involve some congestion, however, implying that transmission fees tend to be excessive. A
price cap can implement the efficient level. Even better outcomes can be achieved under
bandwidth tiering. If the ISP can route traffic through two tiers – a fast lane and a slow
lane – and charge differentiated fees for these tiers, the fee structure that maximizes the
ISP’s profit also leads to efficiency, as it implements the first-best allocation.

Our paper draws on the old literature on common property resources and on recent
work on information congestion (Van Zandt, 2004, and, more closely related, Anderson
and De Palma, 2009). It also links to work on gatekeepers on the internet. Anderson and
De Palma show, among other things, that a monopoly gatekeeper completely prices out
congestion. In their setting, the gatekeeper sets a uniform price for all incoming traffic,
which allows to restrict traffic to the capacity of consumers to process information. In
our context, it is not the limited processing ability of consumers, but the limited capacity
of the network or, more precisely, of switches and interconnection points, which limits
the pass-on of information. In contrast to previous work on information congestion, in
response to the regulatory intervention in telecommunications markets, we draw a richer
picture of the available instruments of the ISP as the gatekeeper. We also show that
monopoly pricing is efficient in some regimes but not in others.

The paper contributes to the literature on net neutrality (see,e.g. Hermalin and Katz,
2007; Economides and T̊ag, 2012; Choi and Kim, 2010; Cheng et al., 2011; Economides
and Hermalin, 2012; Jullien and Sand-Zantman, 2013). We borrow from Economides
and Hermalin (2012) the notion that delivery speed is related to the ratio of traffic to
bandwidth. Like Choi and Kim (2010) and Krämer and Wiewiorra (2012), we provide a
rationale for why prioritization and quality differentiation may be efficiency enhancing.

Independently, Choi et al. (2013) consider congestion externalities on the internet.
They consider the interplay of prioritized delivery and quality of service (QoS) investments
by content providers, such as improved compression technologies. They show that, given a
small network capacity, prioritization can facilitate entry of high-bandwidth content with
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the negative side effect that congestion of other content increases. Given a large network
capacity, entry is less of an issue and prioritization allows for a faster delivery of time-
sensitive content which tends to increase welfare. However, content providers have less
incentive to invest in quality of service.

The remainder of the paper is organized as follows. Section 2 lays out the model, intro-
duces congestion and considers two efficiency benchmarks. Section 3 considers equilibrium
traffic volumes under net neutrality and various other regimes. Section 4 concludes. Proofs
are relegated to the Appendix.

2 The model and efficiency

2.1 The model

We consider a market for internet services which is intermediated by a monopoly ISP
delivering content from content providers to users. There are thus three types of actors,
consumers, content providers and the monopoly ISP. Consumers decide on subscription
and the purchase and use of content; content providers sell their content to consumers and
decide on the intensity of use of the internet and possibly the type of contract offered by
the ISP. Consumers are homogenous with respect to content and derive a utility u from
each content provider whose content is delivered in time.

The continuum of content providers is normalized to mass 1. Content providers come in
two categories. Content providers of category 1 offer time-sensitive content, while content
providers of category 2 only offer time-insensitive content. Content of category 1 arrives
“in good order” with probability γ, which depends on the capacity of the network, on
the decision of the content provider in question about how to deliver the content, and on
the total volume of traffic. Content providers of category 2 are not constrained by the
limited capacity and their content is delivered with probability 1 since their delivery can
be delayed to a moment in which there is no congestion in the network. A fraction µ of
content providers is of category 1, while the remaining fraction 1 − µ is of category 2.
This is arguably the simplest way to model heterogeneity between content providers. The
heterogeneity reflects the fact that some types of content such as live digital television and
video telephony are highly time-sensitive, while other types of content such as email and
delayed on-demand movies and most streaming services are less time-sensitive as email and
delayed on-demand movies may arrive a bit later without much loss and most streaming
services can be buffered and thus do not require immediate delivery from the point of view
of consumers. Implicit in our model is that traffic volumes vary over time with the feature
that there are always periods of spare capacity during which time-insensitive content can
be delivered without any loss of value.

The monopoly ISP offers subscriptions to consumers and, depending on the regime
it is subject to, may offer contracts to content providers. In our setting the capacity of
the ISP is given. Thus, an excessive use by content providers may lead to delays and
a deterioration of quality of time-sensitive content. More specifically, a content provider
with time-sensitive content may increase its probability of being delivered in time, γ, by
sending its content more than once.
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The network may be congested, which depends on how content is treated by the ISPs
and how much content is sent by content providers. Network capacity acts as a common
property resource. The contribution of our base model to the net neutrality debate is to
allow content providers to inflate traffic in order to increase their probability of successful
delivery. The following subsection will specify the behavior of content providers and derive
the delivery probability γ.

Motivated by the net neutrality discussion, we will consider the following regulatory
regimes:

• regime 1: strict net neutrality (only fast lane);

• regime 2: deep packet inspection (fast lane and slow lane, with priority according to
needs for speed);

• regime 3: uniform pricing on the content provider side (only fast lane, but at a price);

• regime 4: regulated tiering (with zero pricing restriction for non-prioritized packages
and minimum quality of service) (fast lane and slow lane, use of slow lane free);

• regime 5: unregulated tiering without price restrictions or minimum quality of service
(fast lane and slow lane, payments depending on lane).

Regime 1 is currently largely in place due to the historical development of the internet
if one abstracts from content delivery networks. Regime 2 is partly practiced with respect
to tv streaming services and VoIP. Regime 4 is foreseen in regulation e.g. in the European
Union. Regimes 3 and 5 are currently not part of the policy debate, but appear natural
possibilities in a two-sided market setting.

The timing of events is as follows:

1. CPs choose pi.

2. ISP announces subscription price s and transmission fee t per unit of content (pos-
sibly conditional on priority classes).

3. CPs decide whether to be active and choose αi. Consumers choose whether to buy
internet access from ISP.

4. Consumers choose whether to connect to CPs and pay s.

5. Content of CP i is delivered to consumers on time with probability γ(αi, α). Con-
sumers pay pi for each unit delivered on time to CP i; CPs pay t to ISP for each
unit of traffic carried (possibly conditional on priority classes). Consumers realize
net utilities, CPs and ISP obtain profits.

We solve for subgame perfect Nash equilibria (SPNE) of the associated game.
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2.2 Congestion

We postulate that viewers are homogeneous and have demand for a single unit of each
content provider. The valuation for each such unit is denoted by u. Hence, each content
provider i will set pi = u, which is collected only if the content reaches the consumer (which
happens with probability γ). Profit of a time-sensitive content provider is γ(αi, α)u− kαi,
where α ≡ (

∫ µ
0
αidi)/µ is the average number of packets sent by time-sensitive CPs.2 To

isolate the effect of redundancies and multiple routes, we consider the stylized situation in
which a content provider has to deliver a single packet. We assume that the probability
that a given packet is delivered on time is equal to the ratio between the ISP’s bandwidth
and the total traffic carried on the network. Sending a packet several times increases the
probability that at least one packet arrives on time. To be more precise, let us distinguish
two systems of content delivery: a one-tiered system, in which all traffic is routed according
to a best-effort principle, and a two-tiered system, in which some traffic is prioritized in
times of bandwidth shortage. Let B denote the ISP’s available bandwidth (or network
capacity). In a one-tiered system, the probability of reaching a consumer when sending a
package αi times is

γ(αi, α) = δ

αi∑
τ=1

(1− δ)τ−1 = 1− (1− δ(α))αi , (1)

where

δ(α) = min

{
B

µα + 1− µ
, 1

}
.

In a two-tiered system in which time-sensitive content is prioritized, so that time-insensitive
traffic does not occupy any bandwidth in times of shortage, the probability of on-time
delivery is

γ(αi, α) = 1− (1− δ̃(α))αi , (2)

where

δ̃(α) = min

{
B

µα
, 1

}
.

Suppose that each content provider can send a package once, twice, or not at all, i.e.,
αi ∈ {0, 1, 2}.3 Assume moreover that B < 1, which implies that in a one-tiered system,
if each CP sends one packet (so α = 1), not all time-sensitive content can be delivered on
time.

At stage 4, if they have purchased internet access, consumers consume all content for
which u ≥ pi (presuming that the payment is only made if the delivery occurs on time).
Suppose a fraction λn of time-sensitive CPs, n = 0, 1, 2, chooses αi = n, so that average

2To not further increase the number of parameters, the value u is assumed to be independent of the
type of traffic. Clearly, introducing different values of u depending on the type would affect the allocation
of capacity between the two types of content. This applies to the equilibrium capacity allocation as well
as the capacity allocation in the first-best and second-best benchmark.

3Sending a package twice can be interpreted as including redundancies, even though redundancies tend
to increase the traffic volume by less than 100 %.
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traffic is α = µ(λ1 + 2λ2) + (1− µ). Then, consumers purchase internet access if and only
if ∫ µ

0

[λ2γ(2, α) + λ1γ(1, α)](u− pi)di+

∫ 1

µ

(u− pi)di ≥ s.

Since, in an SPNE, pi = u for all i, this condition becomes s ≤ 0. At stage 2, the ISP thus
chooses s = 0. This implies that if ISPs can only charge on the consumer side, content
providers absorb all the surplus generated from delivering content and the monopoly ISP
will make zero revenues.4

2.3 Efficiency: first-best and second-best traffic volumes

We begin by considering two benchmarks. In the stylized environment we study, time-
insensitive content does not need to be delivered on time for consumers to derive utility
from it. This implies that the first best always involves prioritization of time-sensitive
content, i.e., content delivery is two-tiered, and the probability of on-time delivery is given
by (2). We also consider a second best world in which all content is routed through a single
tier according to a best-effort principle, and where the probability of delivery is thus given
by (1).

Total surplus in the market for time-sensitive content is5

W (α) =

{
uαγ(1, α)− αk for α ∈ [0, 1]
u [(α− 1)γ(2, α) + (2− α)γ(1, α)]− αk for α ∈ (1, 2].

(3)

To understand the first line, note that when a share λ1 of time sensitive CPs choose αi = 1
and a share λ0 choose αi = 0, then α = λ1. To understand the second line, observe that
when time-sensitive CPs randomize over αi = 1 and αi = 2 with probabilities λ1 > 0 and
λ2 = 1 − λ1, respectively, then α = λ1 + 2(1 − λ1) = 2 − λ1. Thus, we can replace λ1 by
2− α and λ2 by α− 1.

Let α̂dp denote the level of traffic in a two-tiered system above which the delivery
probability falls below 1, i.e., α̂dp is such that δ̃(α) = 1 for α ≤ α̂dp and δ̃(α) < 1 for
α > α̂dp. Similarly, let α̂nn denote the level of traffic in a one-tiered system above which
the delivery probability drops below 1. (The reason for the use of the subscripts dp and nn
will become clear below.) We have α̂dp = B/µ and α̂nn = max{0, (B − (1− µ))/µ}. If the
traffic volume is less than α̂, then all content is delivered on time; otherwise some content
is delayed. It is readily seen that α̂dp ≥ α̂nn: when only time-sensitive content is carried,
the volume needed to cause congestion is larger. The following lemmata characterize first-
best and second-best traffic volumes, respectively. They provide a natural benchmark to
compare equilibrium outcomes with in the various regimes considered below.

4While we restrict our analysis to fixed capacity of the ISP an immediate consequence of this finding is
that in this admittedly extreme setting the ISP has no incentive to increase capacity if expanding capacity
is costly.

5The function W is based on the fact that it can never be socially optimal to have CPs randomize
between 0 and 2 packages. Consider for example a situation in which all CPs send 1 package. One may
wonder whether it can be optimal to have some send 2 packages instead, and others zero, keeping α fixed.
However, the increase in probability of delivery for those sending 2 packages is less than the decrease for
those sending 0: γ(2, α)− γ(1, α) < γ(1, α) ⇔ δ(α)(1− δ(α)) < δ(α).
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Lemma 1 The first-best traffic volume αFB is such that there is no congestion and no
duplication, i.e., each CP’s content is sent at most once:

αFB =

{
α̂dp if B < µ (partial availability)
1 if B ≥ µ (full availability).

According to Lemma 1, the first-best level of traffic always avoids congestion. A social
planner prefers a situation where all available content is delivered on time but some content
is unavailable to a situation where more content is available but some of it delivered with
delay. The intuition for this result is that the elasticity (in absolute value) of the delivery
probability δ̃ equals one:

−dδ̃/dα
δ̃/α

=
µα

B
δ̃(α) = 1.

This implies that increasing α beyond α̂dp leaves the amount of time-sensitive content
delivered on time, and thus gross consumer surplus, unchanged (i.e., αδ̃(α) is invariant
with respect to α). The increase in available content is exactly offset by a decrease in
delivery probability. While an increase in traffic has no effect on consumer surplus, it
raises cost (αk) and is therefore undesirable from a total surplus perspective.

To characterize the second-best level of traffic, let w(δ) ≡ δ2(B + 1 − µ − 2δ)/B and
δmax ≡ arg maxB/(1+µ)≤δ≤B w(δ).

Lemma 2 The second-best traffic volume αSB may involve congestion and duplication:
there exists k̂ ∈ [min{uw(B/(1 + µ)), uB(1− µ2 −B)/(1 + µ)2}, uw(δmax)] such that,

1. for k/u ≥ min{(1− µ)/B,B/(1− µ)}, αSB = α̂nn (partial availability),

2. for (1− µ)B ≤ k/u < min{(1− µ)/B,B/(1− µ)}, αSB ∈ (α̂nn, 1) solves

1− µ
B

(
δ(αSB)

)2
=
k

u
(partial availability), (4)

3. for k̂/u ≤ k/u < (1− µ)B, αSB = 1 (full availability),

4. for min{w(B/(1 + µ)), B(1− µ2 −B)/(1 + µ)2} ≤ k/u < k̂/u, αSB ∈ (1, 2) solves

w
(
δ
(
αSB

))
=
k

u
(partial duplication), (5)

5. for k/u ≤ min{w(B/(1 + µ)), B(1− µ2 −B)/(1 + µ)2}, αSB = 2 (full duplication).

Lemma 2 shows that when all traffic needs to be routed according to a best-efforts
principle, the surplus-maximizing traffic volume may be so high as to cause congestion on
the network; moreover, the planner may want to send time-sensitive content more than
once. This is in contrast with the result of Lemma 1, showing that when time-sensitive
content can be prioritized, the planner avoids congestion and duplication. Here, as the
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cost k of sending packets decreases, the optimal volume of traffic tends to increase. This
result can again be related to the elasticity of the delivery probability:

−dδ/dα
δ/α

=
µα

B
δ(α) =

µα

µα + 1− µ
< 1.

That is, raising α beyond α̂nn leads to an increase in the amount of time-sensitive content
delivered without delay because the reduction in the delivery probability is smaller than
the increase in available content. The intuition for this result is that part of the congestion
cost is borne by time-insensitive content. By definition, time-insensitive content can be
delayed without reducing consumer surplus. Sending more time-sensitive traffic increases
the probability that this content is delivered on time; although it creates congestion, part
of this comes at the expense of time-insensitive content, for which delay does not matter.
This is worthwhile doing if k is sufficiently small.

3 Market equilibrium

3.1 Net neutrality

We now study equilibrium traffic in a regime of net neutrality, where all content is routed
through a single tier. We look for a symmetric equilibrium in which all time-sensitive
CPs behave alike. This may involve randomizing between different αi ∈ {0, 1, 2} (which
is equivalent to fractions λn of time-sensitive CPs using pure strategies n). To begin, we
make the following assumption:

Assumption 1 k/u < B/(1− µ).

This is a minimal assumption for the model to be interesting. Otherwise, it is not
profitable for any time-sensitive CP to send a package even if all other time-sensitive CPs
send zero packages.

Each time-sensitive CP compares its profit from sending the package once, uγ(1, α)−k,
to the profit from sending it twice, uγ(2, α) − 2k, or not at all (yielding zero), tak-
ing as given the average traffic α. For the purposes of the following lemma, let δ̄ =
arg maxB/(1+µ)≤δ≤B δ(1− δ).

Lemma 3 Under net neutrality, depending on the parameters one or several symmetric
and possibly degenerate mixed-strategy equilibria exist. The equilibrium traffic volume αnn

can be characterized as follows:

1. for B < k/u < B/(1 − µ), there is a mixed-strategy equilibrium in which time-
sensitive CPs randomize over αi = 0 (probability 1 − αnn) and αi = 1 (probability
αnn), where αnn ∈ (α̂nn, 1) solves

δ(αnn) =
k

u
(partial availability), (6)
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αnn

0 k/u

2

1

B
1−µ

B(1+µ−B)
(1+µ)2

B(1−B) B

Figure 1: The equilibrium under net neutrality when B < 1/2

2. for B(1−B) ≤ k/u ≤ B, there is a pure-strategy equilibrium in which all CPs choose
αi = 1 so that αnn = 1 (full availability),

3. for k/u ≤ B(1 + µ − B)/(1 + µ)2, there is a pure-strategy equilibrium in which all
time-sensitive CPs choose αi = 2 so that αnn = 2 (full duplication),

4. for min{B(1 − B), B(1 + µ − B)/(1 + µ)2} < k/u < δ̄(1 − δ̄), there is at least
one mixed-strategy equilibrium in which time-sensitive CPs randomize over αi = 1
(probability 2− αnn) and αi = 1 (probability αnn − 1), where αnn ∈ (1, 2) solves

δ(αnn) (1− δ(αnn)) =
k

u
(partial duplication). (7)

No other symmetric equilibrium exists.

According to Lemma 3, for a given value of k/u, it is possible that there is multiplicity
of equilibria. There can be multiple pure-strategy equilibria: for some parameter values,
both αnn = 1 and αnn = 2 can form an equilibrium (namely, if B(1 + µ− B)/(1 + µ2) >
B(1− B)). There can also be multiple mixed-strategy equilibria: noting that, in general,
δ(1 − δ) is inverse U-shaped, with a maximum at δ = 1/2, we conclude that unless
1/2 /∈ (B/(1 + µ), B), δ(α)(1 − δ(α)) = k/u has two solutions, corresponding to two
different mixed-strategy equilibria αnn ∈ (1, 2). Finally, there can be situations with (at
least) one pure-strategy equilibrium and (at least) one mixed-strategy equilibrium. Figure
1 depicts the case where there is a unique equilibrium for all values of k/u, and αnn

decreases (weakly) with k/u over the whole range. Figure 2 depicts the case where for
k/u ∈ (B(1−B), B(1 + µ−B)/(1 + µ)2), there are two pure-strategy equilibria (αnn = 1
and αnn = 2) as well as a mixed-strategy equilibrium with αnn ∈ (1, 2).
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αnn

0 k/u

2

1

B
1−µ

B(1+µ−B)
(1+µ)2

B(1−B) B

Figure 2: The equilibrium under net neutrality when B/(1 + µ) > 1/2

Drawing on Lemmata 2 and 3, the following proposition compares the equilibrium
traffic under net neutrality with the traffic volume that is second-best efficient.

Proposition 1 The equilibrium level of traffic under net neutrality always exceeds the
second-best level: αnn ≥ αSB, with strict inequality for at least part of the parameter space.

According to Proposition 1, net neutrality generates inflation of traffic, leading to
excessive congestion on the network. Time-sensitive CPs do not internalize the effect of
the data they send on overall traffic, and therefore choose to send more than the socially
optimal number of packets.

3.2 Deep packet inspection

Deep packet inspection allows the ISP to identify whether a given packet contains time-
sensitive or time-insensitive content. Therefore, under deep packet inspection, all available
bandwidth in times of shortage can be allocated to time-sensitive content. The probability
that a given packet is delivered without delay is δ̃(α) = B

µα
, and the probability of on-time

delivery for content sent αi times is given by (2). Thus, time-sensitive content has a higher

probability of being delivered on time for any given α. Letting ¯̃δ = arg maxB/2µ≤δ̃≤B/µ δ̃(1−
δ̃), the following lemma characterizes the equilibrium under deep packet inspection.

Lemma 4 Under deep packet inspection, depending on the parameters, one or several
possibly degenerate symmetric mixed-strategy equilibria exist. The equilibrium traffic αdp

can be characterized as follows:
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1. for k/u > B/µ, there is a mixed-strategy equilibrium in which time-sensitive CPs
randomize over αi = 0 (probability 1 − αdp) and αi = 1 (probability αdp), where
αdp ∈ (0, 1) solves

δ̃(αdp) =
k

u
(partial availability), (8)

2. for B(µ−B)/µ2 ≤ k/u ≤ B/µ, there is a pure-strategy equilibrium in which all CPs
choose αi = 1 so that αdp = 1 (full availability),

3. for k/u ≤ B(2µ − B)/4µ2, there is a pure-strategy equilibrium in which all time-
sensitive CPs choose αi = 2 so that αdp = 2 (full duplication),

4. for min{B(µ−B)/µ2B(µ−B)/µ2, B(2µ−B)/4µ2} < k/u < ¯̃δ(1− ¯̃δ), there is at least
one mixed-strategy equilibrium in which time-sensitive CPs randomize over αi = 1
(probability 2− αdp) and αi = 1 (probability αdp − 1), where αdp ∈ (1, 2) solves

δ̃(αdp)
(

1− δ̃(αnn)
)

=
k

u
(partial duplication). (9)

No other symmetric equilibria exist.

Comparing the equilibrium level of traffic described in Lemma 4 with the first-best
level identified in Lemma 1, the following proposition identifies a case in which deep packet
inspection leads to efficiency.

Proposition 2 If B ≥ µ, there exists an equilibrium under deep packet inspection in
which the first-best level of traffic is transmitted irrespective of k/u, i.e., αdp = αFB = 1.

Proposition 2 shows that deep packet inspection has the potential to alleviate traffic
inflation. When B ≥ µ and each CP sends one packet, then all content arrives on time.
Thus, given the other CPs’ behavior, no CP has an incentive to deviate and send more
than one packet, regardless of k/u. Under net neutrality, even if B ≥ µ, the equilibrium
may involve substantial inflation; in particular, full duplication (αnn = 2) may occur if k/u
is low. In such a situation, introducing deep packet inspection can reduce traffic inflation
and eliminate congestion, resulting in the efficient outcome (subject to multiplicity of
equilibria and equilibrium selection).

A sufficient condition for deep packet inspection to improve efficiency is that αdp ≤ αnn,
but this is not necessarily the case. Deep packet inspection can actually lead time-sensitive
CPs to increase the number of packets they send, at least partially dissipating the efficiency
gains from the prioritization of time-sensitive content. Suppose that CPs play a mixed-
strategy equilibrium with α ∈ (0, 1) under both net neutrality and deep packet inspection.6

From (6) and (8), it must then be that δ(αnn) = δ̃(αdp). Using the definitions of δ and δ̃,
we find that

µαnn + 1− µ = µαdp.

6This requires B/µ < k/u < B/(1− µ).
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Thus, the total traffic on the network (in times of shortage) is the same in both regimes.
Intuitively, for CPs to be indifferent, the delivery probability for a given packet must be
the same in both regimes, which requires higher volumes of time-sensitive traffic under
deep packet inspection, i.e., αdp > αnn.

What we are ultimately interested in is whether deep packet inspection increases the
overall probability of delivery, which could be the case even if traffic increases. Consider
again the situation where CPs play equivalent mixed-strategy equilibria. Even though
total traffic (and thus the probability of delivery for a given packet) is the same under
both regimes, time-sensitive content has a higher overall probability of delivery under
deep packet inspection, as there is a larger proportion of time-sensitive CPs sending their
packets twice (αdp > αnn). Formally, δ(αnn) = δ̃(αdp) implies that

γ(αi, α
nn) = 1− (1− δ(αnn))αi = 1− (1− δ(αdp))αi = γ(αi, α

dp).

Because γ(2, α) > γ(1, α), the overall delivery probability for time-sensitive content,

(α− 1)γ(2, α) + (2− α)γ(1, α),

is higher under deep packet inspection than under net neutrality.
We find that deep packet inspection does not necessarily increase delivery probabilities,

and may even decrease them, as we show by example. Suppose that αnn = 1 and αdp = 2
are the respective equilibria under net neutrality and deep packet inspection, i.e., time-
sensitive CPs generate twice as much traffic under deep packet inspection as under net
neutrality. This situation can arise if B < 2µ and

B(1−B) ≤ k

u
≤ B

2µ

(
1− B

2µ

)
,

which to be possible, assuming that total traffic is greater under deep packet inspection
(i.e., 2µ > 1), requires 2µ/(1+2µ) < B. The probability of delivery under net neutrality is
then γ(1, 1) = B while under deep packet inspection it is γ(2, 2) = 1−(1−B/(2µ))2. Thus,
the probability of delivery is higher under net neutrality if B > 1− (1−B/(2µ))2 which is
equivalent to B < 4µ(1− µ). A value of B satisfying 2µ/(1 + 2µ) < B < 4µ(1− µ) exists
if µ < (1 +

√
5)/4 ≈ 0.81. The following proposition summarizes the above finding.

Proposition 3 There are parameter constellations such that the equilibrium probability
of on-time delivery for time-sensitive content is lower under deep packet inspection than
under net neutrality.

While deep packet inspection may implement the efficient allocation, under some pa-
rameter constellation, deep packet inspection actually performs worse than (strict) net
neutrality. Thus, deep packet inspection alone cannot reliably fix the problem of traffic
inflation. We now turn to transmission fees.
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3.3 A uniform transmission fee

Suppose that the ISP routes all traffic according to a best-efforts principle (no prioritiza-
tion) and charges a uniform transmission fee t per unit of traffic it carries on its network.
Type-1 (time-sensitive) CPs choose αi ∈ {0, 1, 2} to maximize

γ(αi, α)u− αi(k + t).

Thus, the equilibrium is the same as under net neutrality (see Subsection 3.1) replacing k
by k+ t, and the demand from time-sensitive CPs α(t) facing the ISP for a given t is equal
to the equilibrium traffic, i.e. α(t) = αnn. The equilibrium is unique for all k + t if and
only B < 1/2, which we will assume is the case in what follows to ensure that demand is
well behaved. The inverse demand is given by

t(α) =


u− k for 0 ≤ α ≤ α̂nn
uδ(α)− k for α̂nn < α ≤ 1
uδ(α)(1− δ(α))− k for 1 < α ≤ 2.

(10)

The ISP’s problem is
max
0≤α≤2

t(α)(µα + 1− µ).

Using (10), we can compute

t′(α) =


0 for 0 ≤ α ≤ α̂nn
− µ
B
u(δ(α))2 for α̂nn < α ≤ 1

− µ
B
u(δ(α))2(1− 2δ(α)) for 1 < α ≤ 2,

(11)

from which we deduce the ISP’s marginal revenue, MR(α) = t′(α)(1 + µ(α− 1)) + µt(α),
noting that (1 + µ(α− 1))/B = 1/δ(α):

MR(α) =


µ(u− k) for 0 ≤ α ≤ α̂nn
−µk for α̂nn < α ≤ 1
µ(u(δ(α))2 − k) for 1 < α ≤ 2.

(12)

Thus, marginal revenue is constant and positive for α ∈ [0, α̂nn], constant and negative for
α ∈ (α̂nn, 1], and decreasing for α ∈ (1, 2]. There are thus three potential solutions to the
ISP’s problem: two corner solutions, α = max{0, α̂nn} and α = 2, as well as one interior
solution solving δ(α) =

√
k/u, which exists if and only if B/(1 +µ) <

√
k/u < B. As the

following lemma shows, the ISP always chooses α = max{0, α̂nn}.

Proposition 4 The transmission fee that maximizes the ISP’s profit prices out congestion,
i.e., t is such that α = α̂nn.

If the ISP is allowed to charge a uniform transmission fee, it responds to traffic infla-
tion by charging a fee that eliminates congestion on its network entirely. This result is
reminiscent of Anderson and De Palma (2009), where a monopoly gatekeeper prices out
information congestion. In contrast to that paper, however, here the fee is in general exces-
sive, compared to what a social planner would choose. The profit-maximizing transmission
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fee implements the second-best level of traffic αSB only if k/u ≥ min{(1−µ)/B,B/(1−µ)}.
If instead k/u < min{(1− µ)/B,B/(1− µ)}, then the profit-maximizing transmission fee
leads to an inefficiently low level of traffic. Thus, it is not a priori clear whether allowing
the ISP to charge a uniform transmission fee is better than net neutrality: while net neu-
trality leads to traffic inflation, freely set transmission fees lead to excessive contraction of
traffic. The ISP may go as far as to price time-sensitive content out of the market (this
happens if B ≤ 1− µ).

The flip side of this argument is that a cap on the transmission fee can always implement
the second-best efficient level of traffic. Thus, a departure from net neutrality that allows
ISPs to set uniform transmission fees should be accompanied by a regulatory intervention
in the form of a price cap.

3.4 Bandwidth tiering

The next regime we examine is one where the ISP can introduce two tiers of service (a fast,
prioritized and a slower best-effort lane), and charge different transmission fees in each tier
(regime 5). The ISP divides its bandwidth B into a slow lane Bs and a fast lane Bf such
that Bs + Bf = B and Bf ≥ Bs ≥ 0, where, as previously, Bf should be interpreted
as the bandwidth allocated to priority service in times of shortage (and similarly for Bs

and non-priority service). We start with the general case in which both ts and tf may be
positive. Further below we look at regulated tiering, and, in particular, a zero-price rule
for the slower lane (regime 4) before determining the solution under unregulated tiering.

Clearly, we must have ts ≤ tf ; otherwise, no one would ever choose the slow lane.
Moreover, in the absence of minimum quality of service (QoS) requirements, the ISP has
an incentive to make the slow lane as slow as possible: on the one hand, the willingness
to pay of time-insensitive CPs is unaffected by Bs; on the other hand, the willingness to
pay of time-sensitive CPs is increasing in Bf . Thus, the ISP will set Bs = 0 and Bf = B.
(Note that this is efficient in our setup, as this does not mean that the slow lane will not
deliver, but rather that the slow lane delivers with delay in times of high traffic.)

The ISP’s problem is

max
ts,tf

(1− µ)ts + µα(tf )tf subject to ts ≤ tf ,

where α(tf ) is the demand for priority service when only time-sensitive content is trans-
mitted via the fast lane, which is equivalent to the equilibrium traffic under deep packet
inspection, αdp, as derived in Lemma 4, replacing k by k + tf . Because of multiplicity of
equilibria, we need to specify which equilibrium is selected for each possible tf in order
for the ISP’s problem to be well defined. In what follows, we will assume that whenever
there are multiple equilibria, the one with the highest traffic volume is selected. This is
the most favorable selection rule for the ISP. We will then show that despite this favorable
rule, the ISP will always choose a transmission fee that prevents congestion.

If B ≥ µ, there is no congestion at α = 1. Under the above selection rule, the inverse
demand for traffic on the fast lane then is

tf (α) =

{
u− k for 0 ≤ α ≤ 1

uδ̃(2)(1− δ̃(2))− k for 1 < α ≤ 2,
(13)
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owing to the fact that α = 2 is an equilibrium for (k + tf )/u ≤ δ̃(2)(1− δ̃(2)) by Lemma
4. If instead B < µ, inverse demand for traffic on the fast lane is

tf (α) =


u− k for 0 ≤ α ≤ α̂dp
uδ̃(α)− k for α̂dp < α ≤ 1
u/4− k for 1 < α ≤ max{1, B/(2µ)}
uδ̃(α)(1− δ̃(α))− k for max{1, B/(2µ)} < α ≤ 2,

(14)

owing to the fact that the equilibrium selected is αdp ∈ (1, 2) solving (9) for δ̃(2)(1−δ̃(2)) <
(k + tf )/u < max{1/4, δ̃(1)(1− δ̃(1))} and α = 2 for (k + tf )/u ≤ δ̃(2)(1− δ̃(2)).

The constraint ts ≤ tf must be binding at the ISP’s profit maximum. Time-sensitive
CPs will never switch to the slow lane since Bs = 0 means the probability of on-time
delivery is zero. Hence, ts = tf , allowing us to write the ISP’s problem as

max
α

(1− µ)tf (α) + µαtf (α),

from which we obtain marginal revenue MR(α) = t′f (α)(1 + µ(α− 1)) + µtf (α).
If B ≥ µ, it follows from (13) that t′f = 0 for all α, so marginal revenue is everywhere

positive, and we can restrict attention to the corner solutions α = 1 and α = 2. If B < µ,
then using (14) and noting that δ̃′ = −(µ/B)δ̃2, we can compute

t′(α) =


0 for 0 ≤ α ≤ α̂dp
− µ
B
u(δ̃(α))2 for α̂dp < α ≤ 1

0 for 1 < α ≤ max{1, B/(2µ)}
− µ
B
u(δ̃(α))2(1− 2δ̃(α)) for max{1, B/(2µ)} < α ≤ 2.

(15)

Hence, the ISP’s marginal revenue in this case, noting that µα/B = 1/δ̃(α), becomes:

MR(α) =


µ(u− k) for 0 ≤ α ≤ α̂dp
−µ(k + (1− µ) u

B
δ̃(α)) for α̂dp < α ≤ 1

µ(u/4− k) for 1 < α ≤ max{1, B/(2µ)}
µ
(
u(δ̃(α))2

(
1− (1−µ)(1−2δ̃(α))

B

)
− k
)

for max{1, B/(2µ)} < α ≤ 2.

(16)
Before deriving the optimal transmission fee on the fast lane under unregulated tiering we
will first look at the case of regulated tiering (regime 4).

Regulated tiering. Consider a zero-price rule on the slow lane that restricts the ISP to
charging ts = 0. The ISP is free to choose tf , as well as Bs and Bf . As previously, he will
set Bs = 0 and Bf = B to maximize the surplus that can be extracted from time-sensitive
CPs. The ISP’s profit is πISP = µαtf (α), where tf (α) is defined in (13) and (14). If
B ≥ µ, then t′f = 0 (except at α = 1, where it is undefined), so it suffices to look at the
corner solutions α = 1 and α = 2. If B < µ, then t′f is as derived in (15), from which we
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deduce marginal revenue MR(α) = µ(αt′f (α) + tf (α)),

MR(α) =


µ(u− k) for 0 ≤ α ≤ α̂dp
−µk for α̂dp < α ≤ 1
µ(u/4− k) for 1 < α ≤ max{1, B/(2µ)}
µ
(
u(δ̃(α))2 − k

)
for max{1, B/(2µ)} < α ≤ 2.

(17)

The following lemma derives the profit-maximizing transmission fees under bandwidth
tiering with and without regulatory restrictions on the price of the slow lane.

Proposition 5 Irrespective of regulation, the profit-maximizing transmission fee on the
fast lane prices out congestion, i.e., tf is such that α = min{1, α̂dp}. The profit-maximizing
transmission fee on the slow lane, if unregulated, is ts = tf .

Unregulated tiering. Proposition 5 shows that the ISP will prevent congestion on the
network also under bandwidth tiering; this holds independently of regulatory restrictions
on the price of the slow lane, ts. If prices are unregulated the ISP will price the slow lane
exactly as on (or just marginally below) the fast lane, so that time-insensitive CPs choose
the slow lane and time-sensitive ones, for whom the slow lane is not an option, choose the
fast lane.7

Comparing the equilibrium outcome when the ISP is allowed to charge for the fast
lane to the first-best solution identified in Lemma 1, we see that the prices that maximize
the ISP’s profits also implement the efficient solution: time-insensitive content is routed
through the slow lane, time sensitive content is routed through the fast lane, and the
volume of traffic is at the efficient level: α = min{1, α̂dp}. Unlike in the case of a uniform
transmission fee, no regulatory intervention is required to ensure efficiency. Allowing the
ISP to do bandwidth tiering and charge (at least) for the fast lane leads to the first-best
allocation.

Note that in this simple model there is no efficiency rationale for implementing a
minimum QoS requirement, i.e., imposing a lower bound B on the bandwidth allocated to
the slow lane (so that Bs ≥ B).

4 Conclusion

We present a model of congestion on the internet in which there is time-sensitive content,
which needs to be delivered on time for consumers to derive utility from it, and time-
insensitive content, for which timely delivery does not matter. The probability of on-time
delivery for a given packet is equal to the ratio between bandwidth and total traffic.
Content providers can increase the overall probability of timely delivery by sending a

7The fact that both lanes are priced the same is an artefact of our somewhat extreme assumption that
time-sensitive content is never delivered on time on the slow lane and that time-insensitive content does
not benefit at all from faster delivery. In a more realistic setup, the result would be less extreme but
similar in spirit.
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packet several times, thereby improving the chances that at least one of them arrives on
time. However, this creates negative externalities for other CPs.

In such a framework, enforcing net neutrality may not be a good idea for network
congestion. Net neutrality effectively turns the network into a common property resource
and does not address the externalities in traffic generation. We show that departures from
strict net neutrality can alleviate the problem. Deep packet inspection may eliminate
congestion, and thus the incentive to inflate traffic. However, the result is ambiguous since
deep packet inspection is possibly inferior to strict net neutrality. That is, deep packet
inspection can backfire if CPs respond by increasing traffic. Alternatively, if the ISP can
charge a transmission fees, it will price out congestion.

We find that fully eliminating congestion is generally not socially optimal in a best-effort
system. Regulating the transmission fee (by means of a price cap) therefore raises efficiency.
Even better outcomes can be achieved by allowing the ISP to engage in bandwidth tiering
and price discrimination. This can implement the first-best allocation without any need
for regulatory intervention.

Appendix: Proofs

Proof of Lemma 1. Using (2) to substitute for γ in (3) and the fact that δ̃(α) = 1 for
α ≤ α̂dp, we can rewrite total surplus as

W (α) =


α(u− k) for α ∈ [0,min{α̂dp, 1})
α(uδ̃(α)− k) for α ∈ [min{α̂dp, 1}, 1]
u− αk for α ∈ [1,max{α̂dp, 1}]
uδ̃(α)

[
α(1− δ̃(α)) + δ̃(α)

]
− αk for α ∈ (max{α̂dp, 1}, 2].

(18)

Differentiating (18) and using δ̃′ = −(µ/B)δ̃2 yields

W ′(α) =



u− k for α ∈ [0,min{α̂dp, 1})
uδ̃(α)

(
1− δ̃(α)µα/B

)
− k for α ∈ [min{α̂dp, 1}, 1]

−k for α ∈ [1,max{α̂dp, 1}]
uδ̃(α)

[
1− δ̃(α) (1 + µα/B)

+2
(
δ̃(α)

)2
(α− 1)µ/B

]
− k for α ∈ (max{α̂dp, 1}, 2].

Noting that µα/B = 1/δ̃(α), we have, for α ∈ [min{α̂dp, 1}, 1], W ′(α) = −k < 0, and

for α ∈ (max{α̂dp, 1}, 2], W ′(α) = u
(
δ̃(α)

)2 (
1− 2δ̃µ/B

)
− k < 0, where the inequality

follows from B/(2µ) ≤ δ̃(α) for α ≤ 2. Hence, W ′(α) > 0 for α < min{α̂dp, 1} and
W ′(α) < 0 for α > min{α̂dp, 1}. Together with continuity of W , this implies that welfare
in a two-tiered system is maximized at α = min{α̂dp, 1}.

Proof of Lemma 2. Since time-insensitive content yields the same utility as time-
sensitive content and has a weakly greater probability of delivery, the second-best allocation
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is such that time-insensitive content is always sent while the traffic volume of time-sensitive
content is adjusted. Using (1) to substitute for γ in (3), total surplus from time-sensitive
content in a one-tiered system can be written as

W (α) =

{
α[uδ(α)− k] for α ∈ [0, 1]
uδ(α) [α(1− δ(α)) + δ(α)]− αk for α ∈ (1, 2]

(19)

Since, for α ≥ α̂nn, δ(α) is strictly monotonic in α, it can be inverted. Let α(δ) =
(B/δ − (1− µ))/µ denote its inverse and define Ŵ (δ) ≡ W (α(δ)). Because 0 ≤ α ≤ 2, an
upper bound on δ is min{B/(1 − µ), 1} and a lower bound is B/(1 + µ). From (19), we
thus obtain

Ŵ (δ) =


1
µ
(B/δ − (1− µ))(uδ − k) for δ ∈

[
B,min

{
B

1−µ , 1
}]

1
µ

[u (δ2 − δ(B + 1− µ) +B)− k (B/δ − (1− µ))] for δ ∈
[

B
1+µ

, B
)
.

(20)
Before establishing Claims (1) - (5), we make three preliminary observations. First, we

show that Ŵ is strictly concave on [B,min{B/(1− µ), 1}]. We have

Ŵ ′(δ) =
1

µ

(
kB

δ2
− u(1− µ)

)
Ŵ ′′(δ) = −2kB

µδ3
< 0.

Second, we derive the condition under which Ŵ (B/(1 + µ)) ≤ Ŵ (B). Substituting into
(20) and rearranging yields

B

1 + µ

(
1− µ− B

1 + µ

)
≤ k

u
. (21)

Third, we derive a necessary condition for the existence of a local maximum on [B/(1 +
µ), B). We have

Ŵ ′(δ) =
u

µ
[2δ − (B + 1− µ)] +

k

µ

B

δ2

Ŵ ′′(δ) =
2

µ

(
u− kB

δ3

)
.

The first-order condition for a local maximum is Ŵ ′(δ) = 0, or w(δ) = k/u. Hence, a
necessary condition for the existence of a local maximum is k/u ≤ maxB/(1+µ)≤δ≤B w(δ).
The unconstrained maximizer of w(δ) is found by solving w′(δ) = [2δ(B+1−µ)−6δ2]/B =
0, yielding a unique δw = (B+1−µ)/3 at which the second-order condition holds (w′′(δw) =
−2(B + 1 − µ)/B < 0). Taking into account the constraint B/(1 + µ) ≤ δ ≤ B and the
fact that w(δ) has a local minimum at δ = 0, we obtain

δmax =


(B + 1− µ)/3 if B/(1 + µ) ≤ (B + 1− µ)/3 ≤ B
B if (B + 1− µ)/3 > B
B/(1 + µ) if (B + 1− µ)/3 < B/(1 + µ),
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and maxB/(1+µ)≤δ≤B w(δ) = w(δmax). We conclude that existence of a local maximum on
[B/(1 + µ), B) requires

k

u
≤ w(δmax). (22)

Note that, for all δ ∈ [B/(1 + µ), B],

w(δ) =
δ2(B + 1− µ− 2δ)

B
<

(1− µ)δ2

B
⇔ B < 2δ,

which is always satisfied since δ ≥ B/(1 + µ) > B/2. Because moreover (1 − µ)δ2/B is
increasing in δ for δ ≥ 0, it follows that

w(δmax) < (1− µ)δmax/B ≤ (1− µ)B. (23)

Claim (1): Concavity of Ŵ on [B,min{B/(1− µ), 1}] implies that if Ŵ ′(min{B/(1−
µ), 1}) ≥ 0 or

min{B/(1− µ), (1− µ)/B} ≤ k/u,

then Ŵ ′ > 0 for all δ ∈ (B,min{B/(1 − µ), 1}] as well as Ŵ ′
+(B) ≡ limδ↘B dŴ/dδ =

(k/B − u(1 − µ))/µ > 0 and hence Ŵ (B) < Ŵ (min{B/(1 − µ), 1}). Moreover, since
(1− µ)B < min{B/(1− µ), (1− µ)/B}, it follows from (21) that Ŵ (B) ≥ Ŵ (B/(1 + µ)),
and from (23) that there is no local maximum on [B/(1 + µ), B). Hence, Ŵ is maximum
at δ = min{B/(1− µ), 1} which implies αSB = α̂nn.

Claim (2): Concavity also implies that if Ŵ ′(min{B/(1− µ), 1}) < 0 < Ŵ ′(B) or

(1− µ)B < k/u < min{B/(1− µ), (1− µ)/B},

then there exists a unique local maximum on [B,min{B/(1−µ), 1}] solving (1−µ)δ2/B =
k/u, which corresponds to the value of α solving (4). Since k/u > (1 − µ)B implies (21)
and rules out existence of a local maximum on [B/(1+µ), B) by (23) and (22), αSB solving
(4) is a global maximum.

Claim (5): A necessary condition for αSB = 2 to be optimal is Ŵ ′(B/(1 + µ)) ≤ 0 ⇔
w(B/(1 + µ)) ≥ k/u. A condition that, in conjunction with the first, is both necessary
and sufficient, is Ŵ (B/(1 + µ)) ≥ Ŵ (B). Using (21) thus establishes the claimed result.

From the above results, we infer that if min{w(B/(1 + µ)), B(1− µ2−B)/(1 + µ)2} <
k/u < (1 − µ)B, the solution must be some δ ∈ (B/(1 + µ), B]. We know that δ = B
(and thus α = 1) must be optimal for w(δmax) ≤ k/u < (1 − µ)B by (22) and (23).
Hence, what remains to be shown is that there exists k̂ with the claimed properties when
k/u < w(δmax).

Note first that the second-order condition for a local maximum at some δ0 ∈ (B/(1 +
µ), B) satisfying the first-order condition w(δ0) = k/u is

Ŵ ′′(δ0) =
2

µ

(
u− kB

δ30

)
≤ 0 ⇔ δ0 <

B + 1− µ
3

.

Thus, we can distinguish three cases:
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• If B ≤ (B+ 1−µ)/3, any δ0 ∈ (B/(1 +µ), B) satisfying w(δ0) = k/u is both a local
and global maximum. Hence, k̂ = uw(δmax) = uw(B).

• If B/(1 + µ) ≥ (B + 1− µ)/3, no δ0 ∈ (B/(1 + µ), B) satisfying w(δ0) = k/u can be
a local maximum. Hence, k̂ = min{uw(B/(1 + µ)), uB(1− µ2 −B)/(1 + µ)2}.

• If B/(1 + µ) < (B + 1 − µ)/3 < B, there exists a unique δ0 ∈ (B/(1 + µ), B)
satisfying both w(δ0) = k/u and δ0 < (B + 1 − µ)/3. This δ0 is a local maximum
but not necessarily a global maximum.

What remains to be shown is that, in the last case, there exists k̂ such that Ŵ (δ0) ≥
Ŵ (B) for k ≤ k̂ and Ŵ (δ0) < Ŵ (B) for k > k̂. Because Ŵ (δ0) = maxδ Ŵ (δ), by the
envelope theorem

d

dk

[
Ŵ (δ0)− Ŵ (B)

]
= 1− B

µδ0
< 0,

where the inequality follows from δ0 < B. This proves Claims (3) and (4).

Proof of Lemma 3. [TO BE ADDED.]

Proof of Proposition 1. [TO BE ADDED.]

Proof of Lemma 4. [TO BE ADDED.]

Proof of Proposition 2. By Lemma 1, the efficient level of traffic when B ≥ µ is
αFB = 1. By Lemma 4, αdp = 1 is an equilibrium for B(µ − B)/µ2 ≤ k/u ≤ B/µ. If
B ≥ µ, then µ−B ≤ 0 and B/µ ≥ 1. Hence, αdp = 1 is an equilibrium for all k/u ∈ [0, 1].

Proof of Proposition 4. The ISP’s profit when α = α̂nn is given by πISP
0 = max{B, 1−

µ}(u− k). His profit when setting α such that δ(α) =
√
k/u (which is greater or equal to

his profit when setting α = 2) is πISP
1 = B(u− 2

√
uk). We have πISP

0 > πISP
1 if and only if

k < 2
√
uk, which is always satisfied.

Proof of Proposition 5. We start by considering the case where B ≥ µ. Under
regulated tiering with ts = 0, the ISP prefers charging tf (1) to tf (2) if and only if

µtf (1) ≥ 2µtf (2) ⇔ µ(u− k) ≥ 2µ

(
uB

2µ

(
1− B

2µ

)
− k
)

⇔ u

(
1− B

µ

(
1− B

2µ

))
+ k ≥ 0,

a sufficient condition for which is 2µ2 − B(2µ − B) ≥ 0. The value of µ that minimizes
this expression is µ = B/2, yielding min 2µ2 − B(2µ − B) = B2/2 > 0. Hence, α = 1 is
optimal.
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Without regulatory restrictions on ts, we have seen that the ISP will set ts = tf . The
ISP prefers tf (1) to tf (2) if and only if

tf (1) ≥ (1−µ)tf (2) + 2µtf (2) = (1 +µ)tf (2) ⇔ u−k ≥ (1 +µ)

(
uB

2µ

(
1− B

2µ

)
− k
)

⇔ u

(
1− (1 + µ)

B

2µ

(
1− B

2µ

))
+ µk ≥ 0,

a sufficient condition for which is 4µ2−(1+µ)B(2µ−B) ≥ 0. The value of µ that minimizes
this expression is µ = B/4, yielding min 4µ2 − (1 + µ)B(2µ − B) = B2(3 + B/2)/4 > 0.
Again, α = 1 is optimal.

We now turn to the case where B < µ. Under regulated tiering with ts = 0, we observe
that marginal revenue is decreasing only on max{1, B/(2µ)}, 2. Thus an interior solution,
if it exists, solves δ̃(α) =

√
k/u, yielding α = B/(µ

√
k/u). The ISP’s profit when setting

α = B/(µ
√
k/u) (which is greater or equal to his profit when setting α = max{1, B/(2µ)}

or α = 2) is B(u− 2
√
uk). His profit at α = α̂dp is µ(u− k). Since µ > B and k < 2

√
uk,

α̂dp is optimal.
Finally we establish that α̂dp is optimal also in the absence of regulation on ts. When

the ISP can set ts > 0, the constraint ts ≤ tf creates an additional incentive not to decrease
tf : any price decrease on the fast lane must also be applied to the slow lane, and implies
a reduction in revenue there. Thus, if tf (α̂dp) is optimal when ts = 0, it must be optimal
a fortiori when ts = tf .
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